Asymptotic and boundedness behaviour of a second order difference equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillatory and Asymptotic Behaviour of a Homogeneous Neutral Delay Difference Equation of Second Order

In this paper we find sufficient conditions for every solution of the neutral delay difference equation ∆(rn∆(yn − pnyn−m)) + qnG(yn−k) = 0 to oscillate or to tend to zero or ±∞ as n → ∞, where ∆ is the forward difference operator given by ∆xn = xn+1−xn, pn, qn, and rn are infinite sequences of real numbers with qn ≥ 0, rn > 0. Different ranges of {pn} are considered. This paper improves,genera...

متن کامل

Asymptotic Behavior of a Second-Order Fuzzy Rational Difference Equation

We study the qualitative behavior of the positive solutions of a second-order rational fuzzy difference equationwith initial conditions being positive fuzzy numbers, and parameters are positive fuzzy numbers. More precisely, we investigate existence of positive solutions, boundedness and persistence, and stability analysis of a second-order fuzzy rational difference equation. Some numerical exa...

متن کامل

Global behaviour of a second order nonlinear difference equation

We describe the asymptotic behaviour and the stability properties of the solutions to the nonlinear second order difference equation xn+1 = xn−1 a + bxnxn−1 , n ≥ 0, for all values of the real parameters a, b, and any initial condition (x−1, x0) ∈ R .

متن کامل

STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM

In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.  

متن کامل

Global asymptotic behavior and boundedness of positive solutions to an odd-order rational difference equation

In this note we consider the following high-order rational difference equation xn = 1+ k ∏ i=1 (1− xn−i ) k ∑ i=1 xn−i , n = 0, 1, . . . , where k ≥ 3 is odd number, x−k , x−k+1, x−k+2, . . . , x−1 is positive numbers. We obtain the boundedness of positive solutions for the above equation, and with the perturbation of initial values, we mainly use the transformation method to prove that the pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Mathematica

سال: 2020

ISSN: 2456-8686

DOI: 10.26524/cm82